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Abstract

Microsimulations make use of quantitative methods to analyze complex phe-

nomena in populations. They allow modeling socioeconomic systems based on

micro-level units such as individuals, households, or institutional entities. How-

ever, conducting a microsimulation study can be challenging. It often requires

the choice of appropriate data sources, micro-level modeling of multivariate pro-

cesses, and the sound analysis of their outcomes. These work stages have to

be conducted carefully to obtain reliable results. We present a generic business

process model for conducting microsimulation studies based on an international

statistics process model. This simplifies the comprehensive understanding of

dynamic microsimulation models. A nine-step procedure that covers all relevant

work stages from data selection to output analysis is presented. Further, we ad-

dress technical problems that typically occur in the process and provide sketches

as well as references of solutions.

Keywords: multi-source analysis, multivariate modeling, social simulation, synthetic
data generation

1. Introduction

Microsimulation studies represent a powerful tool for the multivariate analysis of pop-

ulations (Merz, 1993; O’Donoghue, 2001; O’Donoghue and Dekkers, 2018; Burgard et

al., 2019a). While macrosimulation methods are limited to selected population char-

acteristics on an aggregated level, microsimulation methods are capable of considering
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individual characteristics and interactions. This allows for a more comprehensive un-

derstanding of the population and sophisticated projections on its development. As a

result, microsimulations are increasingly applied for the analysis of complex systems. Ex-

emplary applications are provided by Bourguignon and Spadaro (2006), Pichon-Riviere

et al. (2011), Li and O’Donoghue (2013), Markham et al. (2017), O’Donoghue and

Dekkers (2018), and Burgard et al. (2020).

Microsimulation studies are often performed according to a basic procedure. First,

an adequate base dataset as a representation of the target population is needed. This

requires either synthetic data or empirical observations from administrative records and

surveys (Li and O’Donoghue, 2013). Next, selected features that characterize the popu-

lation in its initial state are altered in scenarios. The scenarios are projected into future

periods and construct individual branches in the evolution of the base population. After

a sufficient number of simulation periods, the branches are compared. The comparison

provides insights into essential dynamics and interdependencies within the population

that typically cannot be assessed otherwise (Li and O’Donoghue, 2013; Burgard et al.,

2019b).

However, there is a lack in generic descriptions on how to construct, implement, and

evaluate microsimulations. This makes it difficult for researchers that are new to the

field to properly conduct their own studies. Microsimulations require the statistically

sound combination of multiple data sets, the construction of a sophisticated simulation

infrastructure, as well as the careful analysis of simulation outcomes. If these challenges

are not addressed properly, microsimulation results are not reliable and may lead to false

conclusions in the analysis.

In this paper, we present a generic business process model for conducting microsim-

ulation studies. We develop a coherent framework that can be used as instruction for

all relevant work stages, including data generation, population projection, and output

analysis. Drawing from the generic statistical business process model by UNECE (2013),

our model consists of nine sequential steps. For each step, we elaborate on data require-

ments, methodological challenges, as well as possible solutions. Our descriptions can

be broadly used as guidance to properly perform microsimulation research for various

applications.

The remainder of the paper is organized as follows. In Section 2, we cover the

specification of needs, data selection and preparation. Section 3 describes the population

projection. In particular, we look at the design of the microsimulation model, population

dynamics, as well as the actual simulation. In Section 4, we address output analysis.

Here, relevant aspects are the analysis of simulation results, dissemination strategies, and

evaluation. Section 5 closes with some concluding remarks and an outlook on future

research.
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2. Requirements and data selection

2.1. Step 1: Specification of needs

The underlying concept of microsimulations is to model the actions and interactions of

micro-level units in a population to analyze their impact on the macro-level (Spielauer,

2011). For instance, micro-level units may represent individuals in the context of social

change, firms in a competitive market situation, and cars as part of traffic or transport

systems. Thus, in order to conduct a microsimulation study that allows for reliable

results, a suitable simulation frame and clear research questions have to be defined.

This can be done by answering the following questions:

• What kind of system shall be simulated?

• What are the characteristics of interest?

• Under which scenarios shall these features be studied?

• Which hypotheses shall be investigated?

• What are the smallest relevant entities for this purpose?

• What are potentially relevant processes and interdependencies?

• What temporal frequency for projection has to be considered?

An important distinction is between static and dynamic microsimulations (Rahman

and Harding, 2017; Hannappel and Troitzsch, 2015). Static microsimulations typically

have fewer data requirements and demand less computational resources than dynamic

microsimulations. They are suitable for applications where the immediate effect of a

clearly defined external change on micro-level units is of interest. The attributes

associated with micro-level units are mainly persistent over the simulation process. In

this setting, the temporal change of micro-level attributes can be modeled indirectly via

reweighting and uprating (inflating/deflating) of variables (Dekkers, 2015). Prominent

models such as EUROMOD (Sutherland and Figari, 2013) commonly focus on the impact

of possible (e.g. tax-related) policy changes.

Dynamic microsimulation models such as DYNASIM (Favreault et al., 2015) allow for

a more sophisticated evolution of the population on the micro-level. A given micro-level

characteristic is an endogenous factor in the simulation. The probability for a specific

realization depends on both the simulated time and the realizations of other micro-level

characteristics. Likewise, dynamic microsimulations are characterized by stochastic tran-

sitions and direct temporal changes of micro-level unit attributes. They are suitable for

applications where multidimensional dependencies between micro-level units are relevant

for the simulation outcomes. For instance, Burgard et al. (2019a) used a dynamic model

for investigating future long-term care demand in a city, which required the anticipation

of family structures and neighborhood characteristics. Naturally, this simulation type

can be very resource-intensive.
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A further distinction of dynamic models is with respect to the representation of time:

discrete and continuous. In discrete-time dynamic microsimulations, temporal changes

occur at predefined time intervals, such as simulated months or years. In continuous-

time dynamic microsimulations, temporal changes occur at any given time within the

simulated time domain (simulation horizon). Conceptually, the choice between these

modes depends on whether it is necessary to account for interperiodic events in light of

the research questions. Methodologically, the choice should be based on the assump-

tions regarding transition dynamics the researcher is willing to make. Discrete dynamics

require less assumptions for the modeling of a given transition, but are also less flexible

in accounting for complex interdependent event sequences (Willekens, 2017). Continu-

ous dynamics typically require far-reaching assumptions on conditional transition rates,

but are generally capable of displaying highly complex temporal event dependencies.

For deeper insights into dynamic microsimulation modeling, see for example Li and

O’Donoghue (2013), O’Donoghue and Dekkers (2018), and Willekens (2017).

Another crucial distinction is between open and closed population microsimulations

(Spielauer, 2009). It refers to the question of whether micro-level units can interact

with other micro-level units that are not initially part of the system of interest. In a

closed-population microsimulation model, interactions are restricted to units that are

part of the base population prior to projection. In an open population microsimulation

model, new units can be generated that are added to the base population during the

simulation. For instance, if a demographic projection of a regional population shall be

performed, then this may correspond to migration from other regions. Conceptually, the

closed approach is sensible when the research focus is on the regional population in its

current state. Any effect that unfolds under a particular projection scenario is exclusively

intrinsic given the initial base population. The open approach can be used when the

focus is on the evolution of the region in which the base population is located. Modeling

the corresponding domain as an entity requires the consideration of migration in order to

be realistic. Naturally, open-population microsimulations need detailed migration data

for this purpose.

After a suitable variant has been determined, the researcher has to define several

simulation scenarios. They should be constructed such that they meet population char-

acteristics that are essential in light of the research questions. A key aspect of mi-

crosimulation is to examine how target variables change under various theoretical social,

economic or policy-related developments. For instance, demographic scenarios or alter-

native policies (e.g. tax-benefit systems) might be relevant for the research context and,

therefore, be integrated into the simulation process.

2.2. Step 2: Data selection & Step 3: Data preparation

After determining research objectives and the model variant, data requirements have to

be specified. The methodological challenges associated with these work stages directly

depend on each other. Therefore, we address these steps jointly.

We introduce some notation and a basic data setting that helps us to illustrate the

relevant aspects. Let U denote a real-world population of |U | = N individuals indexed
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by i = 1, ...,N. The objective is to analyze this population via microsimulation methods.

Thus, in light of the comments from Section 1, it represents the system of interest. Let

Ũ be the base population of |Ũ | = Ñ micro-level units indexed by u = 1, ..., Ñ. It may

be viewed as a digital replica of U that we can project into future periods. Further, let

D ⊂U be a random sample of |D| = n individuals indexed by i = 1, ...,n. Denote pi as

the inclusion probability associated with i ∈ U given the sampling design. The sample

represents an exemplary data input for the microsimulation. It can be used to construct

the base population Ũ and to obtain empirical parameters for the projection of Ũ . In

what follows, we elaborate on potential data sources that a researcher may consider as

a base population directly or for the creation of such a population.

Data Type Characteristics Formalization pi
known?

Example(s)

Administrative Data All units of a
population of in-
terest available in
its entirety

i ∈U pi = 1 Register of res-
idents, register
of taxpayers

Census Data Usually person-
and household-
level data

i ∈U pi = 1 Data collected
from a census

Survey Data A random sample
of the units of the
population of in-
terest is available

i ∈ D ⊂U pi ∈ (0,1] Survey of units
of interest, e.g.
households,
persons, firms

Synthetic Data A synthetic
population of
interest contain-
ing (partially)
synthetic units

u ∈ Ũ Yes / No Generated
data based
on other data
sources

Big Data Huge, complex or
steadily fast gen-
erated data

i ∈ D ⊂U No Remote sens-
ing data or
data collected
using phones

Table 1: Datatypes and their properties

A crucial point for the assessment of data quality is to know about the data produc-

tion process. Since data serves as input for microsimulation models, the data quality

determines also the quality of the microsimulation model. Table 1 provides a generic

overview of exemplary data sources and their associated properties. The most relevant

data sources are administrative data, census data, household, and survey data, as well as

synthetic data (Li and O’Donoghue, 2013). The use of big data sources is not yet estab-

lished in the microsimulation literature, but marks a relevant option for future research

(O’Donoghue and Dekkers, 2018).

We start with administrative and census data. In the best case, these data sets cover

the entire population U and there is no sampling process that has to be anticipated.
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Further, they are rarely subject to measurement errors, such as inaccurate reportings of

sampled individuals. Therefore, they can often be used directly. If the data sets cover

all relevant characteristics in light of the research questions, then the researcher can

use them as base population Ũ for projection. However, if essential characteristics are

missing, then the data sets may be extended artificially via synthetic data generation.

Further, please note that there are also occasions where administrative data does not

cover the entire population, but only a subset of it given the administrative purpose. A

corresponding example would be administrative data on taxation, where only tax-payers

are included. In these cases, issues like coverage problems have to be accounted for in

order to create the base population. For further details, see for instance Smith et al.

(2009).

In the case of survey data, the researcher must be aware of the sampling design

in order to use the data correctly (Dekkers and Cumpston, 2012). Depending on the

application, it is necessary to apply weighting and imputation procedures, provided that

they are not already implemented by the data producer. These steps involve the ad-

justment for possible nonresponse. For unit-nonresponse, the design weights (typically

inverse inclusion probabilities) are altered such that relevant sample totals reproduce

known population totals (Haziza and Beaumont, 2017). This is achieved via calibra-

tion methods, such as the generalized regression estimator (Deville and Särndal, 1992;

Särndal, 2007) and empirical likelihood techniques (Chen and Quin, 1993). For item-

nonresponse, the missing observations are imputed, for instance via multiple imputation

(Schafer and Graham, 2002). Once the data set is adjusted, it can either be directly

used as base population or has to be expanded by means of adding synthetic individuals.

However, often the required data might not be available due to disclosure control,

as the data provider is obligated to delete regional identifiers. In this case, the gen-

eration of synthetic data is an option (Drechsler, 2011). For this, often multiple data

sources (e.g. survey data and known totals) can be combined to construct a synthetic

population based on real-world observations. For instance, the researcher may calcu-

late calibration weights (Deville and Särndal, 1992; Burgard et al., 2019c) for survey

observations such that (synthetic) marginal distributions reproduce known population

totals for a set of relevant characteristics. The synthetic population then consists of

units allocated (with replacement) to spatial regions according to their newly calculated

weight (Williamson, 2013; Tanton et al., 2014; Lovelace, 2016; Rahman and Harding,

2017; Tanton, 2018). Alternatively, a synthetic population can be modeled by esti-

mating distribution or model parameters from survey data and actually reconstruct the

population (Huang and Williamson, 2001; Münnich and Schürle, 2003; Alfons et al.,

2011a, Alfons et al., 2011b). This can avoid cluster effects arising from units that are

repeated frequently within a region. In conclusion, there is a reweighting and an impu-

tation approach to generate synthetic data. For the imputation approach, one considers

to apply editing procedures to avoid implausible variable outcomes (Drechsler, 2011).

After the synthetic population has been generated, it can be used as base population for

projection.

Although not yet established, using big data for microsimulation research is an impor-

tant topic. These data sets are typically very rich in detail and allow to survey complex
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phenomena, such as network structures. As a result, social media data is already used

in humanity fields like sociology (Murthy, 2012). Microsimulations could greatly benefit

from corresponding data in order to improve the modeling of network structures or social

behavior. However, big data sources also impose several methodological challenges, such

as coverage problems or unknown inclusion probabilities. These issues mark a central

subject for future research in the field.

3. Population projection

3.1. Step 4: Design of the microsimulation model

In Section 2.2, we stated the importance of constructing suitable scenarios given the

research questions. However, not only the scenario design is crucial, but also the design

of an overall functional simulation infrastructure. There are different approaches to

ensure that the infrastructure works as desired. Naturally, these approaches depend on

the type and complexity of the microsimulation variant chosen in Step 1. We elaborate

on this aspect hereafter.

Depending on the requirements concerning performance, flexibility, additional fea-

tures and costs, researchers are offered different software solutions to conduct their

microsimulation study. Following Li and O’Donoghue (2013), packages to program mi-

crosimulation models can be categorized according to their development environment,

having pros and cons. General-purpose programming languages (such as C/C++/C#,

Python, or Java) offer high flexibility, but also require high programming skills. General-

purpose statistical or mathematical packages (such as Stata, SAS, or R) might be less

efficient in computing the model, but provide pre-implemented statistical operations that

can be applied for simulation. There are also simulation modeling packages that focus

exclusively on setting up microsimulations, such as EUROMOD (Sutherland and Figari,

2013), Modgen (Spielauer, 2006; Bélanger and Sabourin, 2017), JAMSIM (Mannion et

al., 2012) or LIAM2 (de Menten et al., 2014). These packages are typically less flexi-

ble, but easier to use for applied researchers without advanced knowledge in statistical

programming.

When creating microsimulations, it is recommendable to use a modular structure as

basis for the implementation of population dynamics. Population dynamics are driven by

multiple subprocesses that are usually organized independently. Note that an indepen-

dent organization does not necessarily imply that state transitions within corresponding

subprocesses are stochatistically independent. We will address that aspect later in this

section. The conceptual distinction between these points can be made according to cer-

tain transitions or content groups. O’Donoghue et al. (2009, p. 20) describe modules as

“the components where calculations take place, each with its own parameters, variable

definitions and self-contained structure, with fixed inputs and outputs.”

In a given programming language, the modules may correspond to functions that

require the base population as input. Figure 1 shows a four-step process that takes

place within an exemplary module for discrete-time dynamic microsimulation. In the first

step, the individuals have to be selected regarding their eligibility for a change. This is
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Input Output

1. Selection
• Selection of individuals who are eligible for a change of state
• e.g. fertile women for births

2. Assignment
• Calculation of transition probabilities according to individual 

characteristics
• Application of appropriate alignment methods
• Assignment of the transition probabilities to the individuals

3. Simulation
• Simulation of state changes

4. Adjustment
• Updating of the data
• Consideration of deterministic consequences of state changes

Figure 1: Module structure for a discrete-time dynamic microsimulation

to prevent implausible changes of state and to ensure the consistency of the population.

The potential subpopulation for the event of birth includes, for example, women of

fertile age. In the second step, the transition probabilities are calculated according

to individual combinations of characteristics and linked to the individuals. If external

benchmarks are not reached, calibration methods for an adjustment (so-called alignment

methods) can be applied. Then, the state of the following period is simulated based on

stochastic processes. This part corresponds to the simulation in the actual sense, since

the concrete change of state is conducted. Finally, the population is updated according

to all direct and indirect consequences of the simulated state changes. It should be

noted that the exact structure of a module is individually designed in different models.

Likewise, probabilities or transition matrices can serve as module output (O’Donoghue

et al., 2009).

The modular structure plays a major role, especially in discrete-time dynamic mi-

crosimulations, since the changes of states have to be simulated successively. In continuous-

time dynamic microsimulations, however, state changes cannot be determined indepen-

dently of each other. Therefore, the estimated waiting times in the individual states

could be specified as module output. The state changes are then carried out in an extra

step after the simulation of all waiting times. While the structure of the simulation in

continuous-time variants should not influence the simulation results, it heavily influences

the dynamics in discrete-time models. This is briefly demonstrated hereafter. Let Y and

X be two random events that may represent state changes within the microsimulation

study. There are two different approaches to obtain the joint probability P(Y,X) (Schaich

and Münnich, 2001):

P(Y,X) = P(Y )×P(X |Y ) = P(X)×P(Y |X). (1)

We see that P(Y,X) can be obtained by means of the conditional probability P(X |Y ), but
also via the conditional probability P(Y |X). In general, discrete dynamics do not provide
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an exact point of time when a given transition is realized. Thus, in the case of two

interdependent or competing events, it is necessary to determine which event occurrs

first in light of the simulation context. For instance, if the event of a birth is simulated

prior to the event of a marriage, the probability of marriage can be conditioned on the

event of birth (Burgard et al., 2020). That is to say, the order of the simulation modules

has a direct impact on the simulation outcomes. This motivated van Imhoff and Post

(1998) to investigate three different strategies for organizing the modular structure. The

first strategy is a randomized order of events, which, however, is hardly used in practice.

Another possibility is a two-stage simulation of competing events, whereby the first

stage simulates the occurrence of at least one of the competing events and the second

stage the concrete event. As a third way, the sequence of modules or events of the

microsimulation is considered in the modeling process (van Imhoff and Post, 1998).

For the basic functionality of microsimulations, it is generally not necessary to divide

the population dynamics into different modules. However, the modularization provides

clear practical advantages for the handling and the transparency of the simulation. Mod-

ularization allows individual modules to be easily adapted, exchanged and compared. It

creates a flexible structure that allows the model to be further developed and adapted

for further research questions. Moreover, it also facilitates working on different modules

individually as well as in project teams (Lawson, 2014). In addition to that, modular-

ization allows for the inclusion of module-specific debugging devices (O’Donoghue et

al., 2009). The module can be written such that potential errors are detectable and

precisely displayable. Ideally, the user can be informed about the reason for termination,

otherwise at least about the exact position within the module. Additionally, plausibility

checks within the modules are a useful extension to ensure data consistency. These

checks verify whether the status changes have occurred even in the predefined sub-

population and whether implausible combinations of characteristics occur. Naturally, a

modular structure is implemented as standard in many existing microsimulation tools

such as LIAM2 (O’Donoghue et al., 2009; de Menten et al., 2014).

Nevertheless, using a modularized simulation structure also has some downsides. As

mentioned before, the order of modules directly influences the simulation outcomes.

Thus, the segmentation of population dynamics has to be conducted carefully with

suitable theoretical justification. What is more, there is an ongoing debate to what

extent probability estimation methods that are applied within each of the modules in-

duce systematic errors across modules. For instance, a regression model may produce

independent error terms in a given module. Still, these errors may not be independent

from the error terms of another module, which may cause inferential problems. Hence,

if a modularized structure is implemented, the simulation outcomes have to be carefully

investigated with respect to these issues.

3.2. Step 5: Population dynamics

After the module sequence is defined and the modules are created, the dynamics for the

projection of Ũ have to be established. They mark the underlying processes that drive

the evolution of Ũ over the simulation horizon S. The nature and data requirements for
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the projection depend on the type of microsimulation that is chosen in Step 1. In case

of static microsimulations, only a few selected population characteristics evolve over

time. The projection is often deterministic and can be performed without additional

data sources. Typically, a set of scenarios for the selected variables is created. The base

population evolves through the interaction of the remaining variables with them (Li and

O’Donoghue, 2013).

In case of dynamic microsimulations, the projection is more sophisticated. Since all

population characteristics evolve over time, the initialization of multivariate stochastic

processes for Ũ is necessary. These processes need to resemble all relevant dynamics of

the real population U as closely as possible to allow for genuine simulation outcomes. An

essential concept for this purpose is called state transition, which we briefly explain here-

after. Let Y be a population characteristic with J different realizations within the finite

state space Y = {Y1, ...,YJ}. For instance, if a microsimulation on long-term demand is

conducted Y may correspond to micro-level care dependency and its realizations could

resemble different degrees of care dependency. Based on the theoretical developments

of Burgard et al. (2019b), a state transition is defined as follows:

Definition 1 Let y(s)u be the realized value of Y for a unit u ∈ Ũ in period s ∈ S. A state

transition is the outcome of a stochastic process where y(s+1)
u = Yj and y(s)u = Yk with

Yj,Yk ∈ Y and Yj �= Yk. Its probability is given by π(s+1) jk
u := P(y(s+1)

u = Yj|y(s)u = Yk).

Accordingly, a state transition is a change in the realized value of a population

characteristic for a given unit from one simulation period to the next. Recalling the

long-term care example, a state transition would then correspond to a change of micro-

level care dependency. In light of the previous comments, the probability π(s+1) jk
u must

be determined such that the overall evolution of Ũ is realistic with respect to U . This is

achieved by considering suitable data sources, such as a (panel) survey sample D ⊂U . If

a corresponding data set is available, transition probabilities can be quantified based on

statistical models. In the first step, the statistical relation between transition probabilities

and observed auxiliary variable realizations is estimated over all sampled individuals i∈D.

In the next step, π(s+1) jk
u is determined via model prediction by using the realized values

of the auxiliary variables for u ∈ Ũ in the simulation period s+1.

However, the exact methodology for estimation and projection depends on the con-

cept of time that is chosen in Step 1. Recall that we distinguish between discrete-time

and continuous-time dynamic simulations. For discrete-time, the simulation horizon

S := {1, ...,T} is a finite set of periods, such as months within a year. State transitions

can only occur from one period to the next. In this setting, common approaches are

generalized linear (mixed) models for the quantification of odds, such as logit mod-

els (McCullagh and Nelder, 1989; Greene, 2003). For continuous-time, the simulation

horizon S := [1,T ] is a closed interval. State transitions may occur at any given point

within this interval. In that case, estimation and prediction are performed using survival

analysis, for instance via proportional hazard models (Cox, 1972; McCullagh and Nelder,

1989). Further, note that there are also models whose dynamics rely on Markovian pro-

cesses with infinite state spaces, such as random walks for income simulation (Muennig

et al., 2016).
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Another important aspect of population projection is the consistency of simulated

transition rates in Ũ to observed real-world realization frequencies in U . Let

τ(t)k := ∑
i∈U

y(t)ki , y(t)ki =

{
1 if y(t)i = Yk

0 else
(2)

be the absolute frequency of Yk in the real population U for a point of time t related to

the simulation period s+1. Revisiting the long-term care example again, this figure may

correspond to the number of individuals in a population that have a specific degree of care

dependency. A corresponding figure could be known, for instance, from administrative

records. In dynamic microsimulations, it is often the case that

∑
u∈Ũ

∑
j∈Y

π(s+1) jk
u �= τ(t)k. (3)

The formula indicates that the simulated transition dynamics do not reproduce the

empirically observed frequency for Yk properly. This inconsistency may intensify over

subsequent simulation periods and can lead to an implausible evolution of Ũ . The lat-

ter ultimately causes the simulation outcomes to be not reliable for U , which is the

main purpose of microsimulation studies. In order to ensure consistency in this case,

so-called alignment methods are often applied (Li and O’Donoghue, 2014). These are

(algorithmic) procedures that modify the transition probabilities such that they fit ex-

ternal benchmarks. Recently, several methodologies to achieve this have been proposed.

Exemplary approaches are ex-post alignment via logit scaling (Stephensen, 2016) and

parameter alignment via constrained maximum likelihood estimation (Burgard et al.,

2019b).

3.3. Step 6: Performing the simulation

As dynamic microsimulations are based on stochastic processes, new populations are

generated in each simulation run. Especially, if there are many individuals in the base

population, it is not often possible to save them separately for each period and simulation

run. Still, it is necessary to be able to reproduce the simulation results at any time. When

conducting simulation studies, it is common practice to set seeds in order to repeat the

random processes. In the sense of open and reproducible research, it is desirable to

publish the seeds with the simulation code (Kleiber and Zeileis, 2012). In the case of

error messages during the simulation, setting seeds enables the subsequent replication

and analysis of the whole process.

Checking for plausibility and possible errors plays an important role not only within

modules but also during the entire simulation. In order to identify potential causes in a

targeted manner, predefined queries should be implemented at several points during the

simulation process. The focus is on the functionality of the combination and interaction

of different modules.
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4. Output analysis

4.1. Step 7: Analysis of results

A big advantage of microsimulation models is providing information about possible im-

pacts on a population, given the implemented scenarios. These advantages can only be

converted into practical use if the analysis of the produced information is done properly.

Several aspects have to be taken into account. First, the data has to be analyzed to

prevent programming errors or logical errors in the simulation. Second, an uncertainty

analysis should be performed to identify different sources of variation. And finally, the

output of the simulation has to be analyzed concerning the research question. This

includes both, the analysis of the final simulation states but also the processes that lead

to the final results. Fourth, the analysis results have to be visualized. The visualization

helps to understand the output and provides a good basis for the dissemination of the

results.

4.1.1 Programming and logical errors

Even though Step 3 and Step 4 already include several plausibility checks, oftentimes

problems in the coding or setup of the simulation only become apparent after a full

simulation run. Surprising results may stem from non-linear population dynamics or

errors in the code or setup of the simulation. It is therefore of utmost importance to

first investigate the results of the simulation to the extent that outcomes seem sensible

and the inner logic of the data set are met. If this is not the case, it is necessary to

revisit the code and to explore how the results may be explained by the given process.

4.1.2 Uncertainty analysis

One major challenge in microsimulation modeling is the assessment of uncertainty. Typi-

cally, when analysing estimates, confidence intervals are calculated to quantify the uncer-

tainty. Especially in dynamic microsimulations, the degree of complexity is high making

a simple determination of confidence intervals hardly possible (Lappo, 2012). First of all,

the potential sources of uncertainty should be identified. These depend on the type of

modeling. Different types of uncertainty in microsimulation models can be distinguished

(e.g. Lappo, 2015; Godemé et al. 2013, Sharif et al., 2012):

• Monte Carlo error

• Parameter uncertainty

• Structural uncertainty

• Uncertainty from the base population

The Monte Carlo error is a result of the stochastic processes and therefore occurs

especially in case of dynamic microsimulations. However, behavioral changes in static

simulations can also cause Monte Carlo errors. Parameter uncertainty is directly linked to
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the models on which the microsimulation processes are based. If these are estimated on

sample data, they are directly related to sampling uncertainty. Even assumption-based

parameters are associated with, in this case subjective, uncertainty (Sharif et al., 2012).

Structural uncertainty is primarily due to the type of modeling. This can be the type of

estimation of transition probabilities or survival times on the one hand, but also the type

of the entire microsimulation on the other hand. Since many microsimulations use survey

data as base population, the uncertainty of the sampling must be taken into account. In

the case of synthetic data sets, in turn, different sources of uncertainty arise, for example,

from underlying data sources, used methods, parameters and stochastic processes in the

preparation.

For the consideration of sampling uncertainty in static microsimulations through the

application of standard variance estimation techniques, there are already useful examples

(Lappo, 2012, Godemé et al. 2013). In the case of dynamic modeling the estimation of

confidence intervals is much more difficult due to the complexity of the different sources.

Sharif et al. (2012) and Sharif et al. (2017) propose techniques for the estimation of

confidence intervals for the consideration of parameter uncertainty in dynamic disease

microsimulation models. Petrik et al. (2018) estimate parameter uncertainty for an

activity-based microsimulation model.

A possibility for quantifying the influence of various factors on univariate target values

is variance-based sensitivity analysis as described in Burgard and Schmaus (2019). Here,

the focus is not on estimating confidence intervals, but on measuring and comparing

different influencing variables. The influencing variables can be selected variably, but

must be pairwise independent. These factors may encompass all inputs that are to some

extent wake. The goal of the sensitivity analysis is to attribute to the input factors

a certain amount of variation observed in the target variable. For example different

choices of scenarios or different parameter modeling strategies. Thus, sensitivity analyses

are ideally suited for the selection of influential models for the later determination of

confidence intervals. See Saltelli et al. (2008) for a comprehensive study of sensitivity

analysis methods.

4.2. Hypothesis evaluation and result visualization

The hypotheses stated in Step 1 have to be checked. After conducting the microsimu-

lation, it is necessary to evaluate whether the hypothesized outcome is a realistic devel-

opment or not. It is possible to state the probability of the hypothesis to be true given

the simulation evolves as the population will evolve. Of course, this condition is rarely

possible to assume, and ex-ante, impossible to check in most cases. Especially, if the

microsimulation is projecting the population for a long time horizon. The visualization

of the results can considerably help the understanding of the simulation. Besides easing

the simultaneous consideration of the measures used for the analysis it also helps to com-

municate the results to third persons and hence is also necessary for the dissemination

of the results.
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4.3. Step 8: Dissemination

The dissemination stage aims at disclosing knowledge acquired throughout the microsim-

ulation study. To disseminate the study, it must be ensured that planned dissemination

products, such as code, data and project reports are updated. In addition, the products

must be available in such a way that they are comprehensible to outsiders and comply

with legal requirements, such as publication standards.

The main focus of dissemination is to provide all interested parties with open access

to resources related to the microsimulation study while respecting intellectual property

rights. This includes, in particular, the provision of open access to peer-reviewed scien-

tific publications, to research data and archival facilities for research results (European

Commission, 2008). In particular in the case of microsimulation studies, however, open

access to data cannot be granted for reasons of data protection and potential prop-

erty rights to the data. The development of a security concept to guarantee privacy

protection is to make data accessible through a research data center.

Additional dissemination strategies include the presentation of project research at

conferences, organization of workshops and maintenance of a project website providing

information about the project in general, conference contributions and publications re-

lated to the project. A project website also offers the possibility of setting up a mailing

list to keep the interested public up to date. Furthermore, there are also associations such

as the International Microsimulation Association that specifically aim at the dissemina-

tion of knowledge in the area of microsimulation (e.g. IMA, n.d.). For all dissemination

strategies, especially when providing code and data, it is essential to have a contact

person who accepts inquiries and supports users in the case of problems.

4.4. Step 9: Evaluation

The evaluation assesses all steps of the microsimulation study. It can be conducted either

at the end or on an ongoing basis. The evaluation is based on the information gathered

at the various steps and takes the experience from users, contributors and researchers

into account. Continuously collected quality indicators are compiled to assess the quality

of the individual preceding steps of the microsimulation study. Some steps, however,

require specific measures such as the use of questionnaires to obtain information on the

user-friendliness of the microsimulation study or to assess the effectiveness of the chosen

dissemination strategies. As a result of the evaluation, an action plan is agreed upon.

The implementation of the adopted actions will then again be part of the next round of

evaluation (UNECE, 2013).

The complete business process model for conducting microsimulation studies is sum-

marized in Figure 2.

5. Conclusion

Microsimulation methods play a more and more important role in policy support as well

as in economic and social research. Major emphasis by now was laid on developing
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important applications in many different areas. Less attention was put on the entire

statistical production process. This becomes essentially important since the accuracy of

the microsimulation heavily depends on data availability, data use, the core simulation,

as well as the analysis considering all preceding steps.

The present article provided a general view of implementing a statistics business

model that includes the different steps that have to be considered to establish an accurate

microsimulation. The proposed model is based on UNECE (2013) on behalf of the

international statistical community aiming at providing a general procedure that is widely

accepted in the international statistical system. Further, it furnished the implementation

of open and reproducible microsimulations as research and policy tool.
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